
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Classify, Detect, Localize, and Segment

Ordinary and popular tasks performed on images:
• Object Classification

• Object Classification with Localization (using bounding boxes)

• Object Detection

• Object Key Point (Landmark) Detection

• Object Instance Segmentation

• Object Semantic Segmentation

• Scene parsing and understanding

3

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Landmark (Key Points) Detection

We can detect various landmarks (key points) in images and use them to
model and recognize facial gesture, emotion expressions, body poses etc.:

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Landmark (Key-Points) Detection

Key point detection is crucial from the semantic
point of view to interpret the states and actions
that are visible in the images or movies:

5

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Definitions

Classification is to determine to which class belongs the main object
(or sometimes all objects) in the image.

Classification with localization not only classifies the main object in
the image but also localizes it in the image determining
its bounding box (position and size or localization anchors).

Detection is to find all object of the previously trained (known)
classes in the image and localize them (detect their position and size).

Semantic Segmentation is to label specific regions of
an image according in the pixel level to understand
relationships between objects or recognize important
objects in the context (location) of the other objects
or their states, actions, and dependencies.

Instance Segmentation is the process of dividing an image
into parts known as areas that are homogeneous with respect
to certain selected properties, where these areas are

collections of pixels. We do not only label these areas with
class labels but separate individual instances of the same class.
Properties that are often selected as criteria
for the uniformity of areas are: gray level, color, texture.

6

monkey

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

7

http://home.agh.edu.pl/~horzyk/index-eng.php

Classification with Localization

Classification using DL is to determine the class of the main object
(that is usually in the centre of the image):

• The number of classes is usually limited, and the rest is classified as
background or nothing:

• When localizing the object the output of the network contains extra
outputs for a defining bounding box (bx, by, bh, bw) of the object:

• bx – x-axis coordinate of the center of the object

• by – y-axis coordinate of the center of the object

• bh – the height of the bounding box of the object

• bw – the width of the bounding box of the object

8

car

pedestrian

…

background
bx, by, bh, bw

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Defining Target Labels for Training

9

𝒚 =

𝒑𝒄
𝒃𝒙
𝒃𝒚
𝒃𝒉
𝒃𝒘
𝒄𝟏
𝒄𝟐
⋮
𝒄𝑲

where
𝑝𝑐 – probability of the detection of an object of the specified class

in the image, which is equal to 1 when the object is present and

0 otherwise during the training

𝑏𝑥 – x-coordinate of the bounding box of the object

𝑏𝑦 – y-coordinate of the bounding box of the object

𝑏ℎ – the height of the bounding box of the object

𝑏𝑤 – the width of the bounding box of the object

𝑐1, 𝑐2, … , 𝑐𝐾 – the possible trained classes of the input image, where

only one 𝑐𝑘 is equal to 1 and the others are equal to 0

? – are not taken into account in the loss function because we do not

care these values while no object is detected

Example 1: If there is

an object of class 𝑐2:

𝒚 =

𝟏
𝒃𝒙
𝒃𝒚
𝒃𝒉
𝒃𝒘
𝟎
𝟏
𝟎
𝟎

Example 2: If there is

no object of any of

the defined classes:

𝒚 =

𝟎
?
?
?
?
?
?
?
?

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How Do Detectors Work?

Ordinary object detectors are typically composed of several parts:

Input: Image, Patches, Image Pyramid

Backbone: VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7, CSPResNeXt50, CSPDarknet53

Neck: Additional blocks: SPP, ASPP, RFB, SAM

Path-aggregation blocks: FPN, PAN, NAS-FPN, Fully-connected FPN, BiFPN, ASFF, SFAM

Heads: Dense Prediction (one-stage):

Anchor-based: RPN, SSD, YOLO, RetinaNet

Anchor-free: CornerNet, CenterNet, MatrixNet, FCOS

Sparse Prediction (two-stage):

Anchor-based: Faster R-CNN, R-FCN, Mask RCNN

Anchor-free: RepPoints
10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Object Detection and Cropping Out

Object detection can be made in a few ways:

• using sliding window of the same size or various sizes with different strides
(high computational cost because of many strides) – sliding window detection

• using a grid (mesh) of fixed windows (e.g. YOLO – you only look once)

• and put the cropped image on the input of the ConvNet:

11

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Implementation of

Sliding Windows
Many computations for sliding windows repeat as presented by

the blue sliding window and the red one (the shared area) after the two-pixel stride.

Therefore, we implement sliding windows parallelly and share these computations
that are the same for different sliding windows to proceed computations faster.

12

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Implementation of

Sliding Windows
How the convolutional implementation of the sliding window works on the image?

The drawback is the position of the bounding box designated by the sliding window that
might not be very accurate. Moreover, if we want to fit each object better, we have to

use many such parallel convolutional networks for various sizes of sliding windows.
Even though we cannot use appropriately adjusted sizes of such windows

and achieve poor bounding boxes for the classified objects.
13

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO – You Only Look Once

In YOLO, we put the grid of the fixed sizes on the image:

• Each object is classified only in a single grid cell where is the midpoint of this object
taking into account the ground-truth frame of it defined in the training dataset:

• In all other cells, this object is not represented even if they contain fragments of
this object or its bounding box (frame).

• For each of the grid cell, we create
an (K+5)-dimensional vector storing
bounding box and class parameters:

• The target (trained) output is
a 3D matrix of S x S x (K+5) dimensions,
where S is the number of grid cells
in each row and column.

• This approach works as long as there is only one
object in each grid cell. In practice, the grid is
usually bigger than in this example, e.g. 19x19,
so there is a less chance to have more than one
middle point of the object inside each grid cell.

14

𝒚 =

𝒑𝒄
𝒃𝒙
𝒃𝒚
𝒃𝒉
𝒃𝒘
𝒄𝟏
𝒄𝟐
⋮
𝒄𝑲

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO’s bounding boxes

The YOLO’s bounding boxes are computed using the following formulas:

𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎ

𝑏𝑥 = 𝜎 𝑡𝑥 + 𝑐𝑥

𝑏𝑦 = 𝜎 𝑡𝑦 + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤 ∙ 𝑒𝑡𝑤

𝑏ℎ = 𝑝ℎ ∙ 𝑒
𝑡ℎ

where

𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ is what the YOLO network outputs,

𝑐𝑥 and 𝑐𝑦 are the top-left coordinates of the grid cell, and

𝑝𝑤 and 𝑝ℎ are the anchors dimensions for the grid cell (box).
15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Specifying the Bounding Boxes in YOLO

We specify the bounding boxes in YOLO in such a way:

• Each upper-left corner of each grid cell has (0,0) coordinates.

• Each bottom-right corner of each grid cell has (1,1) coordinates.

• We measure the midpoint of the object
in these coordinates, here (0.4,0.3).

• The width (height) of the object is measured
as the fraction of the overall width (height) of
this grid cell box (frame).

𝒚 =

𝒑𝒄
𝒃𝒙
𝒃𝒚
𝒃𝒉
𝒃𝒘
𝒄𝟏
𝒄𝟐
⋮
𝒄𝑲

=

𝟏
𝟎. 𝟒
𝟎. 𝟑
𝟎. 𝟗
𝟎. 𝟖
𝟏
𝟎
⋮
𝟎

• The midpoints are always between 0 and 1, while widths and heights could be greater than 1.

• If we want to use a sigmoid function (not ReLU) in an output layer and we need to have
all widths and heights between 0 and 1, we can divide widths by the number of grid cells

in a row (𝑏𝑤/𝑆), and divide heights by the number of grid cells in a column (𝑏ℎ/𝑆). 16

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Intersection Over Union

Intersection Over Union (IOU):

• Is used to measure the quality of the estimated bounding box to
the ground-truth bounding box defined in the training dataset.

• Is treated as correct if IOU ≥ 0.5 or more dependently on the application.

• Is a measure of the overlap between two bounding boxes.

• Is computed as the ratio of the size of size of
the intersection between two bounding boxes IOU =
and the union of these bounding boxes: size of

17

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Non-Max Suppression of YOLO

Non-max suppression avoids multiple bounding boxes for the detected objects
leaving only one with the highest IOU.

• When using bigger grids,
many grid cells might think
that they represent the
midpoint of the detected
object.

• In result, every such cell
will produce a bounding box,
so we get multiple bounding
boxes for the same object,
but they will be reduced
using Non-Max Suppression.

• YOLO chooses the one with
the highest probability 𝒑𝒄
computed for each grid cell.

18

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Non-Max Suppression of YOLO

Non-Max Suppression works as follows:

1. Discard all bounding boxes estimated by the convolutional network which
probability is 𝑝𝑐 ≤ 0.6.

2. While there are any remaining
bounding boxes:

1. Pick this one with the largest 𝑝𝑐,
and output that as a prediction of
the detected object.
(selection step)

2. Discard any remaining bounding
box with IOU ≥ 0.5 with the box
output in the previous step.
(pruning/suppression step)

For multiple object detection of
the different classes, we perform
the non-max suppression for each
of these classes independently.

19

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Anchor Boxes for Multiple Object Detection

When two or more objects are in almost the same place in the image and
their midpoints of their ground-truth bounding boxes fall into the same grid cell,
we cannot use the previous algorithm but define a few anchor boxes with
the predefined shapes associated with different classes of objects that can
occur in the same grid cell:

Example:

Anchor box 1 (A1):

Anchor box 2 (A2):

20

The YOLO algorithm with anchor boxes assigns each object in
training image to the grid cell that contains the object’s midpoint

and the appropriate anchor box for the grid cell with the highest IOU.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Anchor Boxes and Target Setup

For two anchor boxes in the grid cell, we consider four cases:

1. There are no midpoints of objects in the cell.

2. There is one midpoint of the object of the anchor 1 and class c1 in the cell.

3. There is one midpoint of the object of the anchor 2 and class c2 in the cell.

4. There is two midpoints of two object of the anchor 1 and the anchor 2 and both classes c1 and c2

in the cell.

𝑦 =

𝑝𝑐
𝐴1

𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

𝑐1
𝐴1

𝑐2
𝐴1

⋮
𝑐𝐾
𝐴1

𝑝𝑐
𝐴2

𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

𝑐1
𝐴2

𝑐2
𝐴2

⋮
𝑐𝐾
𝐴2

(1) 𝑦 =

0
?
?
?
?
?
?
⋮
?
0
?
?
?
?
?
?
⋮
?

(2) 𝑦 =

1
𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

1
0
⋮
0
0
?
?
?
?
?
?
⋮
?

(3) 𝑦 =

0
?
?
?
?
?
?
⋮
?
1
𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

0
1
⋮
0

(4) 𝑦 =

1
𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

1
0
⋮
0
1
𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

0
1
⋮
0

21

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO Detection Model

How does it work?

22

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Classic YOLO Network Architecture

YOLO network architecture is convolutional with the output defined as a 3D
matrix of the S x S x (A x 8) sizes:

• S – is the number or cells in each row and column

• A – is the number of anchors

However, we can modify the original YOLO model in such a way that the numbers of cells
in rows and columns differ.

23

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO v3 Network Architecture

24

It detects better different size objects:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Bag of Freebies and Bag of Specials

Usually, a conventional object detector is trained offline. Therefore, researchers
always like to take this advantage and develop better training methods which can make
the object detector receive better accuracy without increasing the inference cost.

We call these methods that only change the training strategy or only increase the training
cost as “bag of freebies.”

What is often adopted by object detection methods and meets the definition of bag of
freebies is data augmentation, which purpose is to increase the variability of the input
images, so that the designed object detection model has higher robustness to the images
obtained from different environments.

These modules and post-processing methods that only increase the inference cost by
a small amount but can significantly improve the accuracy of object detection,

are call “bag of specials”. Generally speaking, these plugin modules are for enhancing
certain attributes in a model, such as enlarging receptive field, introducing attention
mechanism, or strengthening feature integration capability, etc., and post-processing is
a method for screening model prediction results.

Common modules that can be used to enhance receptive field are SPP, ASPP, and RFB.

https://arxiv.org/pdf/2004.10934.pdf
25

https://arxiv.org/pdf/2004.10934.pdf
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Improving Object Detection Training

For improving the object detection training, a CNN usually uses the following:

• Activations: ReLU, leaky-ReLU, parametric-ReLU, ReLU6, SELU, Swish, or Mish

• Bounding box regression loss: MSE, IoU, GIoU, CIoU, DIoU

• Data augmentation: CutOut, MixUp, CutMix

• Regularization method: DropOut, DropPath, Spatial DropOut, or DropBlock

• Normalization of the network activations by their mean and variance: Batch
Normalization (BN), Cross-GPU Batch Normalization (CGBN or SyncBN), Filter
Response Normalization (FRN), or Cross-Iteration Batch Normalization (CBN)

• Skip-connections: Residual Connections, Weighted Residual Connections,
Multi-input Weighted Residual Connections, or Cross Stage Partial
Connections (CSP)

https://arxiv.org/pdf/2004.10934.pdf

26

https://arxiv.org/pdf/2004.10934.pdf
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO v4 Network Architecture

YOLO v4 takes the influence of state of the
art bag of freebies (BoF) and several bag of
specials (BoS):

• The BoF improves the accuracy of
the detector, without increasing
the inference time, only increasing
the training cost.

• The BoS increases the inference cost by
a small amount; however, significantly
improving the accuracy of object
detection.

YOLO v4 also based on the Darknet and
has obtained an AP value of 43.5 percent
on the COCO dataset along with a real-
time speed of 65 FPS on the Tesla V100,
beating the fastest and most accurate
detectors in terms of both speed and
accuracy.

27

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO v4 Network Architecture

YOLOv4 consists of:

• Backbone: CSPDarknet53 [81]

• Neck: SPP [25], PAN [49]

• Head: YOLOv3 [63]

YOLO v4 uses:

• Bag of Freebies (BoF) for backbone:
• CutMix and Mosaic data augmentation,

• DropBlock regularization,

• Class label smoothing

• Bag of Specials (BoS) for backbone:
• Mish activation,

• Cross-stage partial connections (CSP),

• Multiinput weighted residual connections (MiWRC)

28

• Bag of Freebies (BoF) for detector:
• CIoU-loss,

• CmBN,

• DropBlock regularization,

• Mosaic data augmentation,

• Self-Adversarial Training,

• Eliminate grid sensitivity,

• Using multiple anchors for a single ground truth,

• Cosine annealing scheduler,

• Optimal hyperparameters,

• Random training shapes

• Bag of Specials (BoS) for detector:
• Mish activation,

• SPP-block,

• SAM-block,

• PAN path-aggregation block,

• DIoU-NMS

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Comparisons of YOLO v4 on the Different

GPU Cards: Maxwell, Pascal and Volta

29

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

PP-YOLO

PP-YOLO has been introduced in July 2020. It is based on PaddlePaddle and on YOLO v3.
This object detector with relatively balanced effectiveness and efficiency that can be directly
applied in actual application scenarios. The notable changes include the replacement of
Darknet53 backbone of YOLO v3 with a ResNet backbone and increase of training batch size
from 64 to 192 (as mini-batch size of 24 on 8 GPUs):

https://arxiv.org/abs/2007.12099 (Original paper: PP-YOLO: An Effective and Efficient
Implementation of Object Detector, by Xiang Long et al)

https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
30

https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2007.12099
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

YOLO v5

YOLO v5 is different from all other prior releases (developed by Roboflow team),
as this is a PyTorch implementation rather than a fork from original Darknet.

Same as YOLO v4, the YOLO v5 has a CSP backbone and PA-NET neck.

The major improvements includes mosaic data augmentation and auto learning
bounding box anchors.

YOLO v5 is not to achieve
the best mAP, but instead:

• easy of use

• exportability

• low memory requirements

• high speed

• high mAP

• market size (small)

• new PyTorch framework

31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s Play with Object Detection and

Segmentation Algorithms in Roboflow:

There is a nice application with build-in modules, datasets and models:

1. http://app.roboflow.ai

2. http://public.roboflow.ai

3. http://models.roboflow.ai

Use video tutorials of creating and training YOLO v5 models:
https://www.youtube.com/watch?v=MdF6x6ZmLAY

https://www.youtube.com/watch?v=R1Bf067Z5uM

Watch the video and construct your model as an optional assignment if you like?
32

http://app.roboflow.ai/
http://public.roboflow.ai/
http://models.roboflow.ai/
https://www.youtube.com/watch?v=MdF6x6ZmLAY
https://www.youtube.com/watch?v=R1Bf067Z5uM
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

RetinaNet

RetinaNet:

• can have ~100k boxes with the resolve of class imbalance problem using
focal loss.

• Many one-stage detectors do not achieve good enough performance,
so there are build new two-stage detectors.

33

https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.youtube.com/watch?v=51ujDJ-01oc

RetinaNet

RetinaNet:
• In RetinaNet, a one-stage detector, by using focal loss, lower loss is contributed by

“easy” negative samples so that the loss is focusing on “hard” samples, which
improves the prediction accuracy. With ResNet+FPN as backbone for feature
extraction, plus two task-specific subnetworks for classification and bounding box
regression, forming the RetinaNet, which achieves state-of-the-art performance,
outperforms Faster R-CNN, the well-known two-stage detectors. It is a 2017 ICCV
Best Student Paper Award paper with more than 500 citations. (The first author,
Tsung-Yi Lin, has become Research Scientist at Google Brain when he was presenting
RetinaNet in 2017 ICCV.) (Sik-Ho Tsang @ Medium).

• https://www.youtube.com/watch?v=44tlnmmt3h0

34

https://www.youtube.com/watch?v=44tlnmmt3h0
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Precision and Recall

To define Mean Average Measure (mAP), we will use the following:

Confusion Matrix

• Specifies how many examples were correctly classified as positive (TP),
negative (TN) and how many were misclassified as positive (FP) or negative (FN).

Precision

• measures how accurate is your
predictions, i.e., the percentage of
your predictions are correct.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall

• measures how good you find all the positives. For example, we can find 80% of
the possible positive cases in our top K predictions.

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

35

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Mean Average Precision

Average Precision (AP):

• is a popular metric in measuring the accuracy of object detectors like
Faster R-CNN, SSD, YOLO, etc. Average precision computes the average
precision value for recall value over 0 to 1:

𝐴𝑃 = න
0

1

𝑝 𝑟 𝑑𝑟

• where 𝑝 𝑟 is a precision-recall curve.

Mean Average Precision (mAP):

• is a mean average precision computes the average precision value for recall
value over 0 to 1.

36

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

37

http://home.agh.edu.pl/~horzyk/index-eng.php

Semantic Segmentation

Semantic segmentation is one of the key problems in the field
of computer vision. It paves the way towards complete scene
understanding. An increasing number of applications nourish
from inferring knowledge from imagery. Some of those
applications include self-driving vehicles, human-computer
interaction, virtual reality etc.

With the popularity of deep learning in recent years,
many semantic segmentation problems are being tackled
using deep architectures, like CNN, which surpass
other approaches in terms of accuracy and efficiency.

Semantic segmentation is a natural step
in the progression from coarse to fine inference:

1. The origin could be located at classification of objects,
which consists of making a prediction for a whole input.

2. The next step is localization / detection of objects,
which provides not only the classes but also additional
information regarding the spatial location of those classes.

3. Finally, semantic segmentation of objects achieves
fine-grained inference by making dense predictions
inferring labels for every pixel so that each pixel
is labeled with the class of its enclosing object or region. 38

dog dog cat dog dog cat

https://www.jeremyjordan.me/semantic-segmentation/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Segmentation and Localization

We can localize, segment and describe objects:

39

(a) Image classification (b) Object localization

(c) Semantic segmentation (d) Segmentation in context

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Scene Parsing, Segmentation and

Boundary Detection

To understand the scene, we must detect objects, their boundaries, key points,
segment them, mask, and process in context.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. “Mask R-CNN.” ICCV, 2017

40

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

R-CNN, Fast R-CNN, and Faster R-CNN

R-CNN stands for Regions with ConvNet detection:

• Is a two-step segmentation algorithm.

• The algorithm is run on a big number of
blocks to classify them

• R-CNN proposes regions at a time.

• We get an output label + bounding box

Fast R-CNN:

• A convolutional implementation
of sliding windows to classify
all the proposed regions.

Faster R-CNN:

• Uses a convolutional network
to propose regions.

41

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Fast R-CNN and Faster R-CNN

42

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Mask Prediction using Faster R-CNN

43

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Semantic and Instance Segmenation

44

Instance Segmentation Methods can be divided into:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Examples of Masks

45

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Human Pose Estimations

46

Human Pose Estimations are used to detect and track actions performed by
people to control the mor to react to what they do.

They may be used for movement improvements in sport, to detect undesirable
behaviors or gathering training data for robots:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

47

http://home.agh.edu.pl/~horzyk/index-eng.php

Implementation of Detection Models

You can find many implemented frameworks for object detections, localization,
detection and segmentation online (on the github) and utilize them for free.

You can also use applications like Roboflow:

1. http://app.roboflow.ai

2. http://public.roboflow.ai

3. http://models.roboflow.ai

Use video tutorials of creating and training YOLO v5 models:
https://www.youtube.com/watch?v=MdF6x6ZmLAY

https://www.youtube.com/watch?v=R1Bf067Z5uM

48

http://app.roboflow.ai/
http://public.roboflow.ai/
http://models.roboflow.ai/
https://www.youtube.com/watch?v=MdF6x6ZmLAY
https://www.youtube.com/watch?v=R1Bf067Z5uM
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

1. Create a free account: https://app.roboflow.com/

2. Fork sample dataset, e.g. BCCD, and use it.

49

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

3. Preprocessing
of the training data:
• Stretching

• Filling

• Fitting

• etc.

50

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

4. Augmentation for the enrichment of training data to achieve better performance

51

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

52

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

5. Generation step creates a ready-to-use training data set using the data augmentation:

6. After these five steps, we are ready to Start Training:

53

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

7. Export the data to use the created model with Google Colab or your own machine:

8. Open YOLOv5 Colab Notebook

9. Use your secret code
with your dataset:

10. And start training:

54

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

11. When training is finished, we can see the result using the tensorboard:

55

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

12. The view of the training metrices and the model correctness:

56

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

13. Look at the ground truth BCCD training data:

57

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

14. Look at the augmented ground truth BCCD training data:

58

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Roboflow Detection Implementation
https://www.youtube.com/watch?v=MdF6x6ZmLAY

15. Finally, we can run inference and look at BCCD test images with detected objects:

Many cells were detected and classified correctly, but some of them are missing!

59

https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://pjreddie.com/darknet/yolo/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-2/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-2/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-2/
https://arxiv.org/pdf/2004.10934.pdf
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://pjreddie.com/darknet/yolo/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-2/
https://arxiv.org/pdf/2004.10934.pdf
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-5/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-5/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-5/
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://arxiv.org/pdf/1708.02002.pdf
https://www.youtube.com/watch?v=44tlnmmt3h0
https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-5/
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://arxiv.org/pdf/1708.02002.pdf
https://www.youtube.com/watch?v=44tlnmmt3h0
https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
https://towardsdatascience.com/yolo-v4-or-yolo-v5-or-pp-yolo-dad8e40f7109
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://github.com/AlexeyAB/darknet
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://ieeexplore.ieee.org/document/9206848
http://home.agh.edu.pl/~horzyk/presentation/WCCI2020_yolo_AdrianHorzyk_EfeErgun.mp4
https://www.cs.princeton.edu/courses/archive/spring18/cos598B/public/outline/Instance%20Segmentation.pdf
https://www.cs.princeton.edu/courses/archive/spring18/cos598B/public/outline/Instance%20Segmentation.pdf
https://www.cs.princeton.edu/courses/archive/spring18/cos598B/public/outline/Instance%20Segmentation.pdf
https://github.com/AlexeyAB/darknet
https://www.altexsoft.com/blog/data-science-artificial-intelligence-machine-learning-deep-learning-data-mining/?utm_source=newsletter&utm_medium=email&utm_campaign=NewsletterMay5&utm_term=N4&utm_content=b
https://ieeexplore.ieee.org/document/9206848
http://home.agh.edu.pl/~horzyk/presentation/WCCI2020_yolo_AdrianHorzyk_EfeErgun.mp4
https://www.cs.princeton.edu/courses/archive/spring18/cos598B/public/outline/Instance%20Segmentation.pdf
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://github.com/ultralytics/yolov5
https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://public.roboflow.ai/
http://app.roboflow.ai/
http://models.roboflow.ai/
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://www.jeremyjordan.me/semantic-segmentation/
https://www.jeremyjordan.me/semantic-segmentation/
https://github.com/ultralytics/yolov5
https://www.youtube.com/watch?v=MdF6x6ZmLAY
http://public.roboflow.ai/
http://app.roboflow.ai/
http://models.roboflow.ai/
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef
https://www.jeremyjordan.me/semantic-segmentation/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

